
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


2

http://home.agh.edu.pl/~horzyk/index-eng.php


Fixed-size Windows

Sequences usually model processes (actions, movements) in time and 
are sequentially processed to predict next data (conclusions, reactions).

Sequences can have variable length, but typical machine learning models 
use a fixed number of inputs (fixed-size window) as a prediction context:

3

moving
fixed-size window

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


A standard network will not work!

When dealing with sequential data (like sentences of words):

➢ Inputs and outputs of different examples can usually have different lengths.

➢ The same words in the different examples do not share the same inputs and
features learned across different positions of text.

A standard network requires to associate inputs with given features, which 
cannot move or change over time to train the network well!

We need to find another neural network structure which can work with 
sequences of inputs (e.g. words) that can move the position in the sequences 

and take into account the context of previous inputs (like previous words).

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Recurrent Neural Networks

We will use recurrent neural networks to overcome the presented difficulties and to 
allow the network to share features and weights and use the context of previous sequence 
elements:

ෝ𝒚 𝒕 = 𝒈𝒚 𝑾𝒚𝒂 ∙ 𝒂
𝒕 + 𝒃𝒚

𝒈𝒚 is usually sigmoid

𝒂 𝒕 = 𝒈𝒂 𝑾𝒂𝒂 ∙ 𝒂
𝒕−𝟏 +𝑾𝒂𝒙 ∙ 𝒙

𝒕 + 𝒃𝒂

𝒈𝒂 is usually ReLU or tanh

In the above network, we put the subsequent elements (e.g. words) on the inputs of 
the subnetworks which share weights with the other subnetworks (in a nutshell, all these 
subnetworks are the same network), so the position of the element (word) in the sequence
can be different without harm in the representation of this word by the neural network.

Thanks to the connections to the next subnetwork, we can use the context of the processed, 

previous elements (words) represented by the outputs of previous subnetworks 𝒂 𝒕 .

5

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Simplification of the notation

We often use a simplified notation to compute 𝒂 𝒕 and ෝ𝒚 𝒕 which stacks the weight 
matrices and also speed up computations a bit because we do not need to operate on 

two matrices and adding the multiplication results when computing 𝒂 𝒕 but multiplying 
only once in parallel:

𝒂 𝒕 = 𝒈𝒂 𝑾𝒂𝒂 ∙ 𝒂
𝒕−𝟏 +𝑾𝒂𝒙 ∙ 𝒙

𝒕 + 𝒃𝒂 = 𝒈𝒂 𝑾𝒂 ∙ 𝒂
𝒕−𝟏 , 𝒙 𝒕 + 𝒃𝒂

𝒈𝒂 is usually ReLU or tan

ෝ𝒚 𝒕 = 𝒈𝒚 𝑾𝒚𝒂 ∙ 𝒂
𝒕 + 𝒃𝒚 = 𝒈𝒚 𝑾𝒚 ∙ 𝒂

𝒕 + 𝒃𝒚

𝒈𝒚 is usually sigmoid

6

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Prediction of Sequence Elements

We can try to predict a next word in a sentence, more generally, 
a next element in a sequence, we usually use a few previous words, e.g.:

„I grew up in England. Thanks to it, I speak fluent …………” (English)

RNNs (e.g. LSTM, GRU) are capable of handling such long-term dependencies.

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


State Transition Function

The state transition function defining a single time step can be 
defined by the shift operator q-1:

• h0 – an initial step (at t=0) associated with the external vertex (frontier)

• ht = f(ht-1, xt) – t-step

• q-1 ht = ht-1 – unitary time delay

• ot – output (predicted value)

8

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Unfolding Time and

Next Sequence Elements

The sequence can be
modeled by a deep
feedforward neural
network which weights
can be computed
using backpropagation:

hT – is the last state of
the whole sequence,

W – weights are 
shared (replicated,
the same) between
layers.

9

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Encoding Networks

For a given sequence s, the encoding network associated to s is formed by 
unrolling (time unfolding) the recursive network through the input sequence s:

10

In linear dynamical 
systems, we can 
define:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Variety of Sequential Transductions

Due to the solved task, we can distinguish various unfolded network structures for:

• Sequence classification (e.g. sentiment classification)

• IO transduction (e.g. conversion, transfer)

• Sequence generation (e.g. music generation)

• Sequence transduction (from one to another, e.g. sequence translation)

11

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Unification of Various Sequence Tasks

We can easily unify all the presented tasks:

12

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Shallow Recurrent Neural Networks

A shallow Recurrent Neural Network (RNN) defines a non-linear dynamical system:

where the functions f and g are non-linear functions (e.g. tanh), 
and h0 = 0 or can be learned jointly with the other parameters.

13

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use additional short-cut connections between inputs and outputs:

14

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use higher-order states and connections between them,
e.g. the 2nd order states:

15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use the output to convey contextual information of the previous state:

16

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can also force the target signal (presented by a teacher):

17

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can create Bidirectional Recurrent Neural Networks (BRNN) 
for off-line processing or when the sequences are not temporal 
to predict not only next but also previous sequence elements:

18

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Deep Dilated Recurrent Neural Networks

We can also stack recurrent layers and combine various approaches:

Dilated connections can help to carry the context of previous states.

19

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

Long Short-Term Memory networks are a special kind of 
Recurrent Neural Networks, containing four (instead of one) 

interacting layers and capable of learning long-term dependencies.

20

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Cell State of LSTMs

The key to LSTM is the cell state represented by the horizontal line running 
through the top of the diagram. It is a kind of conveyor belt.

It runs straight down the entire chain, with only some minor linear interactions.

The LSTM has the ability to remove or add information 
to the cell state, carefully regulated by structures called gates.

21

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Gates of LSTMs

Gates are a way to optionally let information through.

They are composed out of a sigmoid neural net layer and 
a pointwise multiplication operation.

The sigmoid layer outputs numbers between zero and 
one, describing how much of each component should be 
let through. A value of zero means “let nothing through,” 
while a value of one means “let everything through!”

22

An LSTM has three of 
these gates, to protect 
and control the cell state.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory Gates

A simple LSTM cell consists of three gates:
• Forget gate (f) – whether and to what extend to forget (erase) the previous Ct-1 cell

• Input gate (i) – it controls writing to the cell and how strong the given input influence 
the output result and combines it with the previous cell output

• Output gate (o) – how much to reveal the cell and use for computing the output ht

23

Forget gate (f)

Input gate (i)

Output gate (o)

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory Gates

In the first step, the LSTM decides by a sigmoid layer called the “forget gate 
layer” what information is let to go throw away from the cell state. 

The forget gate (o) of a simple LSTM cell takes the decision about what must 
be removed from the Ct-1 state after getting the output of the previous state, 
and it thus keeps only the relevant stuff. 

It is surrounded by a sigmoid function  which crushes the input between [0, 1]. 

We multiply the forget gate with previous cell state to forget the unnecessary 
stuff from the previous state which is not needed anymore.

24

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory Gates

In the next step, the LSTM decides what new information will be stored in the cell 
state: First, a sigmoid layer  called the input gate layer decides which values we 
shall update. Next, a tanh layer creates a vector of new candidate values ෩𝑪𝒕 that 
could be added to the state.

In the next step, we shall combine these two to create an update to the state.

The input gate (i) of a simple LSTM decides about the addition of new stuff from the 
present input to our present cell state scaled by how much we wish to add them.

The sigmoid layer  decides which values to be updated and tanh layer creates 
a vector for new candidates to added to the present cell state.

25

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory Gates

In the third step, the LSTM updates the old cell state Ct−1 into the new cell state Ct. 
The previous steps already decided what to do, we just need to actually do it.

We multiply the old state by ft, forgetting the things we decided to forget earlier. 
Then we add it∗ ෩𝑪𝒕. This is the new candidate values, scaled by how much 
we decided to update each state value.

We can actually drop the information about the old subject’s attribute and 
add the new information, as we decided in the previous steps.

26

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory Gates

Finally, the LSTM decides what is going to the output based on our cell state, 
but will be a filtered version. First, a sigmoid layer  decides what parts of 
the cell state go to the output. Then, the cell state is put through tanh 
(to push the values to be between −1 and 1) and multiply it by the output of 
the sigmoid gate, so that only the parts are sent to the output.

The output gate (o) of a simple LSTM cell decides what to output from the cell 
state which will be done by the sigmoid function .

The input xt is multiplied with tanh to crush the values between (-1,1) and 
then multiply it with the output of sigmoid function:

27

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Variants of LSTM

Peephole connections can be added to some or all the gates of the LSTM cells:

The forget gate can be coupled to forget only when we are going to put 
something in the place of the forgotten older state:

28

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Gated Recurrent Unit (GRU)

The gated recurrent unit combines the forget 
and input gates into a single update gate and 
merges the cell state and hidden state together 
with some other minor changes.

In result, the GRU units are simpler and 
computationally faster than the LSTM units:

29

LSTM

GRU

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


30

http://home.agh.edu.pl/~horzyk/index-eng.php


Adding Simple RNN layers

We add SimpleRNN layer(s) after the Embedding layer:

31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Adding LSTM layers

Similarly, we can also add LSTM layer(s):

32

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Adding GRU layers

Similarly, we can also add GRU layer(s):

33

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Using Bidirect GRU model

To achieve better results we can use a bidirect model(s):

34

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


35

http://home.agh.edu.pl/~horzyk/index-eng.php


NaN loss or validation loss

What can we do when NaN loss or validation loss happens to our training:

• Try normalizing your data, or inspect your normalization process for any bad values 
introduced, i.e. Add(BatchNormalization()) layer to your network to prevent exploding 
gradients.

• Add regularization to add l1 or l2 penalties to the weights. Otherwise, try a smaller l2 
reg. i.e. l2(0.001), or remove it if already exists.

• Try a smaller Dropout rate (0.2, 0.1, 0.05, or even less).

• Clip the gradients to prevent their explosion, e.g., you could use clipnorm=1. or 
clipvalue=1. as parameters for your optimizer.

• Check the validity of inputs (no NaNs or sometimes 0s). i.e. df.isnull().any()

• Replace optimizer with Adam which is easier to handle. 
Sometimes also replacing sgd with rmsprop would help.

• Use RMSProp with heavy regularization to prevent gradient explosion.

• Verify that you are using the right activation function (e.g. using a softmax instead of 
sigmoid for multiple class classification).

• Try to increase the batch size (e.g. 32 to 64 or 128) to increase the stability of your 
optimization.

• Check the size of your last batch which may be different from the batch size.

36

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff#toc
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff#toc
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

